The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Predict multiple value based on another value
legeithien
Member Posts: 3 Learner I
in Help
Hello guys,
so, i had this data which represents the contents of soil in x-depth and the data only has limited depth. i tried to make model based on contents of soil in x-depth which going to predict those contents of soil arent shown on the depth. e.g contents of soil in 3 m depths and make this data to predict contents of soil in 5m depth
i tried using impute missing values operator to estimate those missing values of contents and using naive bayes, k-NN. i was going to use at least 3 predictions but every time i tried it kept getting errors, so im only using those two for now.
my question is, is it correct? or is there any methods that i could tried to achieve better results?
Thanks in advance!
so, i had this data which represents the contents of soil in x-depth and the data only has limited depth. i tried to make model based on contents of soil in x-depth which going to predict those contents of soil arent shown on the depth. e.g contents of soil in 3 m depths and make this data to predict contents of soil in 5m depth
i tried using impute missing values operator to estimate those missing values of contents and using naive bayes, k-NN. i was going to use at least 3 predictions but every time i tried it kept getting errors, so im only using those two for now.
<?xml version="1.0" encoding="UTF-8"?><process version="9.9.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.9.000" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="read_excel" compatibility="9.9.000" expanded="true" height="68" name="Read Excel" width="90" x="45" y="34"> <parameter key="excel_file" value="C:\Users\Avengers\Documents\RapidMiner\Local Repository\fyp\another part1.xlsx"/> <parameter key="sheet_selection" value="sheet number"/> <parameter key="sheet_number" value="1"/> <parameter key="imported_cell_range" value="A1"/> <parameter key="encoding" value="SYSTEM"/> <parameter key="first_row_as_names" value="true"/> <list key="annotations"/> <parameter key="date_format" value=""/> <parameter key="time_zone" value="SYSTEM"/> <parameter key="locale" value="English (United States)"/> <parameter key="read_all_values_as_polynominal" value="false"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Depth (m).true.real.attribute"/> <parameter key="1" value="Gravel.true.integer.attribute"/> <parameter key="2" value="Sand.true.real.attribute"/> <parameter key="3" value="Silt.true.real.attribute"/> <parameter key="4" value="Clay.true.integer.attribute"/> <parameter key="5" value="LL.true.integer.attribute"/> <parameter key="6" value="PL.true.integer.attribute"/> <parameter key="7" value="PI.true.integer.attribute"/> <parameter key="8" value="Moisture Content (%).true.real.attribute"/> <parameter key="9" value="Bulk Density (Mg/m3).true.real.attribute"/> <parameter key="10" value="Dry Density (Mg/m3).true.real.attribute"/> <parameter key="11" value="Specific Gravity.true.real.attribute"/> <parameter key="12" value="SPT (N).true.integer.attribute"/> <parameter key="13" value="Type of Soil.true.polynominal.attribute"/> <parameter key="14" value="Soil Condition.true.polynominal.attribute"/> <parameter key="15" value="Resistivity (Ohm\.m).true.real.attribute"/> <parameter key="16" value="Seismic, Vp (km/s).true.real.attribute"/> </list> <parameter key="read_not_matching_values_as_missings" value="true"/> </operator> <operator activated="true" class="subprocess" compatibility="9.9.000" expanded="true" height="82" name="Subprocess" width="90" x="179" y="34"> <process expanded="true"> <operator activated="true" class="select_attributes" compatibility="9.9.000" expanded="true" height="82" name="Select Attributes" width="90" x="45" y="34"> <parameter key="attribute_filter_type" value="all"/> <parameter key="attribute" value=""/> <parameter key="attributes" value=""/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="attribute_value"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="time"/> <parameter key="block_type" value="attribute_block"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> </operator> <operator activated="true" class="set_role" compatibility="9.9.000" expanded="true" height="82" name="Set Role" width="90" x="179" y="34"> <parameter key="attribute_name" value="Type of Soil"/> <parameter key="target_role" value="prediction"/> <list key="set_additional_roles"> <parameter key="Type of Soil" value="label"/> </list> </operator> <operator activated="true" class="impute_missing_values" compatibility="9.9.000" expanded="true" height="68" name="Impute Missing Values" width="90" x="313" y="34"> <parameter key="attribute_filter_type" value="all"/> <parameter key="attribute" value=""/> <parameter key="attributes" value=""/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="attribute_value"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="time"/> <parameter key="block_type" value="attribute_block"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> <parameter key="iterate" value="true"/> <parameter key="learn_on_complete_cases" value="true"/> <parameter key="order" value="chronological"/> <parameter key="sort" value="ascending"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <process expanded="true"> <operator activated="true" class="k_nn" compatibility="9.9.000" expanded="true" height="82" name="k-NN" width="90" x="179" y="34"> <parameter key="k" value="9"/> <parameter key="weighted_vote" value="true"/> <parameter key="measure_types" value="MixedMeasures"/> <parameter key="mixed_measure" value="MixedEuclideanDistance"/> <parameter key="nominal_measure" value="NominalDistance"/> <parameter key="numerical_measure" value="EuclideanDistance"/> <parameter key="divergence" value="GeneralizedIDivergence"/> <parameter key="kernel_type" value="radial"/> <parameter key="kernel_gamma" value="1.0"/> <parameter key="kernel_sigma1" value="1.0"/> <parameter key="kernel_sigma2" value="0.0"/> <parameter key="kernel_sigma3" value="2.0"/> <parameter key="kernel_degree" value="3.0"/> <parameter key="kernel_shift" value="1.0"/> <parameter key="kernel_a" value="1.0"/> <parameter key="kernel_b" value="0.0"/> </operator> <connect from_port="example set source" to_op="k-NN" to_port="training set"/> <connect from_op="k-NN" from_port="model" to_port="model sink"/> <portSpacing port="source_example set source" spacing="0"/> <portSpacing port="sink_model sink" spacing="0"/> </process> </operator> <connect from_port="in 1" to_op="Select Attributes" to_port="example set input"/> <connect from_op="Select Attributes" from_port="example set output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Impute Missing Values" to_port="example set in"/> <connect from_op="Impute Missing Values" from_port="example set out" to_port="out 1"/> <portSpacing port="source_in 1" spacing="0"/> <portSpacing port="source_in 2" spacing="0"/> <portSpacing port="sink_out 1" spacing="0"/> <portSpacing port="sink_out 2" spacing="0"/> </process> </operator> <operator activated="true" class="multiply" compatibility="9.9.000" expanded="true" height="103" name="Multiply" width="90" x="313" y="34"/> <operator activated="true" class="concurrency:cross_validation" compatibility="9.9.000" expanded="true" height="145" name="k-NN (3)" width="90" x="447" y="187"> <parameter key="split_on_batch_attribute" value="false"/> <parameter key="leave_one_out" value="false"/> <parameter key="number_of_folds" value="10"/> <parameter key="sampling_type" value="automatic"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <parameter key="enable_parallel_execution" value="true"/> <process expanded="true"> <operator activated="true" class="k_nn" compatibility="9.9.000" expanded="true" height="82" name="k-NN (2)" width="90" x="246" y="34"> <parameter key="k" value="5"/> <parameter key="weighted_vote" value="true"/> <parameter key="measure_types" value="MixedMeasures"/> <parameter key="mixed_measure" value="MixedEuclideanDistance"/> <parameter key="nominal_measure" value="NominalDistance"/> <parameter key="numerical_measure" value="EuclideanDistance"/> <parameter key="divergence" value="GeneralizedIDivergence"/> <parameter key="kernel_type" value="radial"/> <parameter key="kernel_gamma" value="1.0"/> <parameter key="kernel_sigma1" value="1.0"/> <parameter key="kernel_sigma2" value="0.0"/> <parameter key="kernel_sigma3" value="2.0"/> <parameter key="kernel_degree" value="3.0"/> <parameter key="kernel_shift" value="1.0"/> <parameter key="kernel_a" value="1.0"/> <parameter key="kernel_b" value="0.0"/> </operator> <connect from_port="training set" to_op="k-NN (2)" to_port="training set"/> <connect from_op="k-NN (2)" from_port="model" to_port="model"/> <portSpacing port="source_training set" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="9.9.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="45" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance_classification" compatibility="9.9.000" expanded="true" height="82" name="k-NN (4)" width="90" x="179" y="34"> <parameter key="main_criterion" value="accuracy"/> <parameter key="accuracy" value="true"/> <parameter key="classification_error" value="false"/> <parameter key="kappa" value="true"/> <parameter key="weighted_mean_recall" value="false"/> <parameter key="weighted_mean_precision" value="false"/> <parameter key="spearman_rho" value="false"/> <parameter key="kendall_tau" value="false"/> <parameter key="absolute_error" value="false"/> <parameter key="relative_error" value="false"/> <parameter key="relative_error_lenient" value="false"/> <parameter key="relative_error_strict" value="false"/> <parameter key="normalized_absolute_error" value="false"/> <parameter key="root_mean_squared_error" value="true"/> <parameter key="root_relative_squared_error" value="false"/> <parameter key="squared_error" value="false"/> <parameter key="correlation" value="false"/> <parameter key="squared_correlation" value="false"/> <parameter key="cross-entropy" value="false"/> <parameter key="margin" value="true"/> <parameter key="soft_margin_loss" value="false"/> <parameter key="logistic_loss" value="false"/> <parameter key="skip_undefined_labels" value="true"/> <parameter key="use_example_weights" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="k-NN (4)" to_port="labelled data"/> <connect from_op="k-NN (4)" from_port="performance" to_port="performance 1"/> <connect from_op="k-NN (4)" from_port="example set" to_port="test set results"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_test set results" spacing="0"/> <portSpacing port="sink_performance 1" spacing="0"/> <portSpacing port="sink_performance 2" spacing="0"/> </process> </operator> <operator activated="true" class="concurrency:cross_validation" compatibility="9.9.000" expanded="true" height="145" name="Naive Buyes" width="90" x="447" y="34"> <parameter key="split_on_batch_attribute" value="false"/> <parameter key="leave_one_out" value="false"/> <parameter key="number_of_folds" value="10"/> <parameter key="sampling_type" value="automatic"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <parameter key="enable_parallel_execution" value="true"/> <process expanded="true"> <operator activated="true" class="naive_bayes" compatibility="9.9.000" expanded="true" height="82" name="Naive Bayes" width="90" x="246" y="34"> <parameter key="laplace_correction" value="true"/> </operator> <connect from_port="training set" to_op="Naive Bayes" to_port="training set"/> <connect from_op="Naive Bayes" from_port="model" to_port="model"/> <portSpacing port="source_training set" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="9.9.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance_classification" compatibility="9.9.000" expanded="true" height="82" name="Naive Bayes (2)" width="90" x="179" y="34"> <parameter key="main_criterion" value="accuracy"/> <parameter key="accuracy" value="true"/> <parameter key="classification_error" value="false"/> <parameter key="kappa" value="true"/> <parameter key="weighted_mean_recall" value="false"/> <parameter key="weighted_mean_precision" value="false"/> <parameter key="spearman_rho" value="false"/> <parameter key="kendall_tau" value="false"/> <parameter key="absolute_error" value="false"/> <parameter key="relative_error" value="false"/> <parameter key="relative_error_lenient" value="false"/> <parameter key="relative_error_strict" value="false"/> <parameter key="normalized_absolute_error" value="false"/> <parameter key="root_mean_squared_error" value="true"/> <parameter key="root_relative_squared_error" value="false"/> <parameter key="squared_error" value="false"/> <parameter key="correlation" value="false"/> <parameter key="squared_correlation" value="false"/> <parameter key="cross-entropy" value="false"/> <parameter key="margin" value="true"/> <parameter key="soft_margin_loss" value="false"/> <parameter key="logistic_loss" value="false"/> <parameter key="skip_undefined_labels" value="true"/> <parameter key="use_example_weights" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Naive Bayes (2)" to_port="labelled data"/> <connect from_op="Naive Bayes (2)" from_port="performance" to_port="performance 1"/> <connect from_op="Naive Bayes (2)" from_port="example set" to_port="test set results"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_test set results" spacing="0"/> <portSpacing port="sink_performance 1" spacing="0"/> <portSpacing port="sink_performance 2" spacing="0"/> </process> </operator> <connect from_op="Read Excel" from_port="output" to_op="Subprocess" to_port="in 1"/> <connect from_op="Subprocess" from_port="out 1" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Naive Buyes" to_port="example set"/> <connect from_op="Multiply" from_port="output 2" to_op="k-NN (3)" to_port="example set"/> <connect from_op="k-NN (3)" from_port="model" to_port="result 4"/> <connect from_op="k-NN (3)" from_port="test result set" to_port="result 6"/> <connect from_op="k-NN (3)" from_port="performance 1" to_port="result 5"/> <connect from_op="Naive Buyes" from_port="model" to_port="result 1"/> <connect from_op="Naive Buyes" from_port="test result set" to_port="result 3"/> <connect from_op="Naive Buyes" from_port="performance 1" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> <portSpacing port="sink_result 6" spacing="0"/> <portSpacing port="sink_result 7" spacing="0"/> </process> </operator> </process>
my question is, is it correct? or is there any methods that i could tried to achieve better results?
Thanks in advance!
0
Answers
Dortmund, Germany
will try to do that and give the feedback, thanks for responding it
edit: after i look further into it, i dont think it was a suitable method for my data because my data has a time series of "depth" but i need to look for the content of soil on that depth which the depth doesnt have to be a series. what i was looking for is how do i predict the content of that depth