The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

How to impute the missing data with the most frequent value

DoomyDoomy Member Posts: 2 Contributor I
edited December 2021 in Help
I have a dataset containing categorical and numerical data and I would like to know how I can impute the missing data with the frequent value.
For example
ID         Feature1      Feature 2        Feature 3 
_______________________________________
123      core i7          Windows         33844690
334       IOS              phone             99983648

Note that the missing values are huge but I can't drop the column.
Is there an operator I can use for nominal data to be replaced with the mode? and the numerical data with average or max? 

Best Answer

  • MartinLiebigMartinLiebig Administrator, Moderator, Employee-RapidMiner, RapidMiner Certified Analyst, RapidMiner Certified Expert, University Professor Posts: 3,533 RM Data Scientist
    Solution Accepted
    Hi,
    you can use Replace Missing Values. Average actually takes the mode for nominal columns.

    Cheers,
    Martin
    - Sr. Director Data Solutions, Altair RapidMiner -
    Dortmund, Germany
Sign In or Register to comment.