The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

"how to handle missing values while calculating correllation"

venkatesh20venkatesh20 Member Posts: 23 Maven
edited June 2019 in Help
Hi  Gurus,
 I am working on movie lens data set, consider the below data set

userid, movieid, rating
1,100,5
1,101,2
1,102,4
2,100,5
2,102,1

I want to compute the correlation between the userids 1 and 2, only based on the items which users 1 and 2 have commonly rated. I want to ignore the uncommon ratings while calculating correlation. For eg. In the above case i want to compute the correlation only based on the ratings of the movie ids 100 and 102 which user 1 and user 2 have in common. Can any one guide me how to do this in rapid miner?

I tried the one below and it has missing values, and does not give proper results

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.0">
 <context>
   <input>
     <location/>
   </input>
   <output>
     <location/>
     <location/>
   </output>
   <macros/>
 </context>
 <operator activated="true" class="process" expanded="true" name="Process">
   <process expanded="true" height="449" width="681">
     <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="120">
       <parameter key="repository_entry" value="jester/jester_sub"/>
     </operator>
     <operator activated="true" class="pivot" expanded="true" height="76" name="Pivot" width="90" x="179" y="120">
       <parameter key="group_attribute" value="userid"/>
       <parameter key="index_attribute" value="jokeid"/>
     </operator>
     <operator activated="true" class="data_to_similarity" expanded="true" height="76" name="Data to Similarity" width="90" x="447" y="120">
       <parameter key="measure_types" value="NumericalMeasures"/>
       <parameter key="numerical_measure" value="CorrelationSimilarity"/>
     </operator>
     <connect from_op="Retrieve" from_port="output" to_op="Pivot" to_port="example set input"/>
     <connect from_op="Pivot" from_port="example set output" to_op="Data to Similarity" to_port="example set"/>
     <connect from_op="Data to Similarity" from_port="similarity" to_port="result 1"/>
     <portSpacing port="source_input 1" spacing="0"/>
     <portSpacing port="sink_result 1" spacing="126"/>
     <portSpacing port="sink_result 2" spacing="0"/>
   </process>
 </operator>
</process>
Tagged:

Answers

  • landland RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 2,531 Unicorn
    Hi,
    I guess it would be the easiest solution to replace the missing values. If you would simply remove all attributes with missing values, you would loose informations, because not rating a movie is an information about a user. If you replace the missing values by -1, this might catch the real connection much better.

    Greetings,
      Sebastian
Sign In or Register to comment.