The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here
Ada boost issue
Hi Guys-
Looks like the ada boost operator has an error. I can run the process without issue by using the Weka Ada boost and Weka decision stump.
Below is the code and then the error message.
error:
Looks like the ada boost operator has an error. I can run the process without issue by using the Weka Ada boost and Weka decision stump.
Below is the code and then the error message.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.0">
<context>
<input>
<location/>
</input>
<output>
<location/>
<location/>
<location/>
</output>
<macros/>
</context>
<operator activated="true" class="process" expanded="true" name="Process">
<process expanded="true" height="546" width="386">
<operator activated="true" class="read_csv" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30">
<parameter key="file_name" value="C:\Documents and Settings\aiufh35\Desktop\misc\PLAT\PLAT.csv"/>
</operator>
<operator activated="true" class="set_role" expanded="true" height="76" name="Set Role" width="90" x="112" y="30">
<parameter key="name" value="PLAT"/>
<parameter key="target_role" value="label"/>
</operator>
<operator activated="true" class="numerical_to_binominal" expanded="true" height="76" name="Numerical to Binominal" width="90" x="271" y="-12">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="PLAT"/>
<parameter key="include_special_attributes" value="true"/>
</operator>
<operator activated="true" class="read_csv" expanded="true" height="60" name="Read CSV (2)" width="90" x="45" y="210">
<parameter key="file_name" value="C:\Documents and Settings\aiufh35\Desktop\misc\PLAT\PLAT_VAL.csv"/>
</operator>
<operator activated="true" class="set_role" expanded="true" height="76" name="Set Role (2)" width="90" x="45" y="300">
<parameter key="name" value="PLAT"/>
<parameter key="target_role" value="label"/>
</operator>
<operator activated="true" class="numerical_to_binominal" expanded="true" height="76" name="Numerical to Binominal (2)" width="90" x="45" y="390">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="PLAT"/>
<parameter key="include_special_attributes" value="true"/>
</operator>
<operator activated="true" class="work_on_subset" expanded="true" height="76" name="Work on Subset" width="90" x="45" y="120">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="weight"/>
<parameter key="attributes" value="torder_dum|sq_DAYSFROMAPPTOORD|SQ_SKUSPURCHASED|SQ_RCSPONORED|SQ_FULLCADENCE|RCSPONORED2_1|PRNT_PERSONALCAREREV|PRNT_NUTRITIONREV|PRNT_HOMECAREREV|PRNT_DURABLESREV|PRNT_BEAUTYREV|PLAT|PERSONALCAREREV|Ord2_1|NUTRITIONREV|LN_TOTALORDERS|LN_GROSSIBOPRICE|IBOSPONORED2_1|IBOSPONORED|HOMECAREREV|DaysIBO90|DURABLESREV|Cadence2_1|BEAUTYREV"/>
<parameter key="invert_selection" value="true"/>
<parameter key="include_special_attributes" value="true"/>
<process expanded="true">
<connect from_port="exampleSet" to_port="example set"/>
<portSpacing port="source_exampleSet" spacing="0"/>
<portSpacing port="sink_example set" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
</operator>
<operator activated="true" class="adaboost" expanded="true" height="76" name="AdaBoost" width="90" x="179" y="120">
<process expanded="true" height="368" width="368">
<operator activated="true" class="decision_stump" expanded="true" height="76" name="Decision Stump" width="90" x="65" y="42"/>
<connect from_port="training set" to_op="Decision Stump" to_port="training set"/>
<connect from_op="Decision Stump" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
</process>
</operator>
<operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="196" y="243">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="313" y="120"/>
<connect from_op="Read CSV" from_port="output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Numerical to Binominal" to_port="example set input"/>
<connect from_op="Numerical to Binominal" from_port="example set output" to_op="Work on Subset" to_port="example set"/>
<connect from_op="Read CSV (2)" from_port="output" to_op="Set Role (2)" to_port="example set input"/>
<connect from_op="Set Role (2)" from_port="example set output" to_op="Numerical to Binominal (2)" to_port="example set input"/>
<connect from_op="Numerical to Binominal (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Work on Subset" from_port="example set" to_op="AdaBoost" to_port="training set"/>
<connect from_op="AdaBoost" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="AdaBoost" from_port="example set" to_port="result 2"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>
error:
Message: Cannot clone com.rapidminer.example.set.RemappedExampleSet: java.lang.reflect.InvocationTargetException. Target: java.lang.UnsupportedOperationException: The method getNominalMapping() is not supported by numerical attributes! You probably tried to execute an operator on a numerical data which is only able to handle nominal values. You could use one of the discretization operators before this application.. Cause: java.lang.UnsupportedOperationException: The method getNominalMapping() is not supported by numerical attributes! You probably tried to execute an operator on a numerical data which is only able to handle nominal values. You could use one of the discretization operators before this application..
0
Answers
The error message more probably indicates that something is awry with your data, rather than the operator; if you replace your datasources with a generator the problem disappears, like this.. Perhaps you could put in a break to check your data - as far as I can make out your numerical to binominal operators just fill numerical columns with "true", which may not be what you want, like this.. Anyways, good luck!
Regarding the numeric to binomial operator I had a target column coded 0,1 but it came through csv operator as numeric so I was <I thought> changing it to a type of nominal...