The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

linear regression, confidence limit and forward selection

HzuHzu Member Posts: 2 Contributor I
edited September 2019 in Help
Hello together,

I'm just beginning with rapid miner on some (for me) well known data, and several questions occur to me.

1. Assume numerical data with one label, on which a regression is performed. Is there a way to give a confidence or prediction interval for each predicted label? And if so, how can I get it?

2.
I am applying forward selection with linear regression as learner two times to a (purely numerical) example set. First time with the inner operators "linear regression -> apply model -> performance" as inner operators for the forward selection, and then with a X-validation in the forward selection. Inside the X-validation I have again linear regression as learner and apply model + performance as testing. The results in the performance vectors are slightly different as I expected, and each "method" produces an example set. The example set coming from the 'X-Validation-branch' does not contain predicted values in contrast to the one coming from the forward selection only with linear regression, although I would say, that the output of both coustructs in the forward selection is the same.
I can craete predicted values through another model application + performance after the X-Validation inside the forward selection, but I fear that this changes the result of the forward selection. What woud be a proper way to get predicted values of both methods?

I would highly appreciate if someone could give me a hint. Thank's in advance.

P.S. additionally the XML code:
      </operator>
      <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="581" y="30"/>
      <operator activated="true" class="multiply" expanded="true" height="112" name="Multiply" width="90" x="45" y="300"/>
      <operator activated="true" class="optimize_selection_forward" expanded="true" height="94" name="Forward Selection (X-Val)" width="90" x="246" y="390">
        <parameter key="stopping_behavior" value="without significant increase"/>
        <parameter key="alpha" value="0.01"/>
        <process expanded="true" height="542" width="614">
          <operator activated="true" class="x_validation" expanded="true" height="112" name="X-Validation" width="90" x="112" y="30">
            <process expanded="true">
              <operator activated="true" class="linear_regression" expanded="true" height="76" name="Linear Regression (X-Val)" width="90" x="115" y="30"/>
              <connect from_port="training" to_op="Linear Regression (X-Val)" to_port="training set"/>
              <connect from_op="Linear Regression (X-Val)" from_port="model" to_port="model"/>
              <portSpacing port="source_training" spacing="0"/>
              <portSpacing port="sink_model" spacing="0"/>
              <portSpacing port="sink_through 1" spacing="0"/>
            </process>
            <process expanded="true">
              <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model (X-Val)" width="90" x="45" y="30">
                <list key="application_parameters"/>
              </operator>
              <operator activated="true" class="performance_regression" expanded="true" height="76" name="Performance (X-Val)" width="90" x="182" y="30">
                <parameter key="absolute_error" value="true"/>
                <parameter key="relative_error" value="true"/>
                <parameter key="relative_error_lenient" value="true"/>
                <parameter key="relative_error_strict" value="true"/>
                <parameter key="normalized_absolute_error" value="true"/>
                <parameter key="root_relative_squared_error" value="true"/>
                <parameter key="squared_error" value="true"/>
                <parameter key="correlation" value="true"/>
                <parameter key="squared_correlation" value="true"/>
                <parameter key="prediction_average" value="true"/>
                <parameter key="spearman_rho" value="true"/>
                <parameter key="kendall_tau" value="true"/>
              </operator>
              <connect from_port="model" to_op="Apply Model (X-Val)" to_port="model"/>
              <connect from_port="test set" to_op="Apply Model (X-Val)" to_port="unlabelled data"/>
              <connect from_op="Apply Model (X-Val)" from_port="labelled data" to_op="Performance (X-Val)" to_port="labelled data"/>
              <connect from_op="Performance (X-Val)" from_port="performance" to_port="averagable 1"/>
              <portSpacing port="source_model" spacing="0"/>
              <portSpacing port="source_test set" spacing="0"/>
              <portSpacing port="source_through 1" spacing="0"/>
              <portSpacing port="sink_averagable 1" spacing="0"/>
              <portSpacing port="sink_averagable 2" spacing="0"/>
            </process>
          </operator>
          <connect from_port="example set" to_op="X-Validation" to_port="training"/>
          <connect from_op="X-Validation" from_port="averagable 1" to_port="performance"/>
          <portSpacing port="source_example set" spacing="0"/>
          <portSpacing port="sink_performance" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="optimize_selection_forward" expanded="true" height="94" name="Forward Selection (Regression)" width="90" x="246" y="255">
        <parameter key="stopping_behavior" value="without significant increase"/>
        <parameter key="alpha" value="0.01"/>
        <process expanded="true" height="542" width="614">
          <operator activated="true" class="linear_regression" expanded="true" height="76" name="Linear Regression" width="90" x="45" y="30"/>
          <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model (2)" width="90" x="179" y="30">
            <list key="application_parameters"/>
          </operator>
          <operator activated="true" class="performance_regression" expanded="true" height="76" name="Performance (2)" width="90" x="313" y="30">
            <parameter key="absolute_error" value="true"/>
            <parameter key="relative_error" value="true"/>
            <parameter key="relative_error_lenient" value="true"/>
            <parameter key="relative_error_strict" value="true"/>
            <parameter key="normalized_absolute_error" value="true"/>
            <parameter key="root_relative_squared_error" value="true"/>
            <parameter key="squared_error" value="true"/>
            <parameter key="correlation" value="true"/>
            <parameter key="squared_correlation" value="true"/>
            <parameter key="prediction_average" value="true"/>
            <parameter key="spearman_rho" value="true"/>
            <parameter key="kendall_tau" value="true"/>
          </operator>
          <connect from_port="example set" to_op="Linear Regression" to_port="training set"/>
          <connect from_op="Linear Regression" from_port="model" to_op="Apply Model (2)" to_port="model"/>
          <connect from_op="Linear Regression" from_port="exampleSet" to_op="Apply Model (2)" to_port="unlabelled data"/>
          <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
          <connect from_op="Performance (2)" from_port="performance" to_port="performance"/>
          <portSpacing port="source_example set" spacing="0"/>
          <portSpacing port="sink_performance" spacing="0"/>
        </process>
      </operator>
      <operator activated="false" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="45" y="120">
        <process expanded="true">
          <operator activated="false" class="linear_regression" expanded="true" height="76" name="Linear Regression (2)" width="90" x="115" y="30"/>
          <connect from_port="training" to_op="Linear Regression (2)" to_port="training set"/>
          <connect from_op="Linear Regression (2)" from_port="model" to_port="model"/>
          <portSpacing port="source_training" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true">
          <operator activated="false" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
            <list key="application_parameters"/>
          </operator>
          <operator activated="false" class="performance_regression" expanded="true" height="76" name="Performance" width="90" x="179" y="30"/>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_averagable 1" spacing="0"/>
          <portSpacing port="sink_averagable 2" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Read Excel" from_port="output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
      <connect from_op="Filter Examples" from_port="example set output" to_op="Replace Missing Values" to_port="example set input"/>
      <connect from_op="Replace Missing Values" from_port="example set output" to_op="Normalize" to_port="example set input"/>
      <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/>
      <connect from_op="Multiply" from_port="output 1" to_op="Forward Selection (Regression)" to_port="example set"/>
      <connect from_op="Multiply" from_port="output 2" to_op="Forward Selection (X-Val)" to_port="example set"/>
      <connect from_op="Multiply" from_port="output 3" to_port="result 7"/>
      <connect from_op="Forward Selection (X-Val)" from_port="example set" to_port="result 4"/>
      <connect from_op="Forward Selection (X-Val)" from_port="attribute weights" to_port="result 5"/>
      <connect from_op="Forward Selection (X-Val)" from_port="performance" to_port="result 6"/>
      <connect from_op="Forward Selection (Regression)" from_port="example set" to_port="result 1"/>
      <connect from_op="Forward Selection (Regression)" from_port="attribute weights" to_port="result 2"/>
      <connect from_op="Forward Selection (Regression)" from_port="performance" to_port="result 3"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
      <portSpacing port="sink_result 4" spacing="0"/>
      <portSpacing port="sink_result 5" spacing="0"/>
      <portSpacing port="sink_result 6" spacing="0"/>
      <portSpacing port="sink_result 7" spacing="0"/>
      <portSpacing port="sink_result 8" spacing="0"/>
    </process>
  </operator>

Answers

  • landland RapidMiner Certified Analyst, RapidMiner Certified Expert, Member Posts: 2,531 Unicorn
    Hi,
    there's currently no method available for the confidence or prediction interval modeling. In fact I don't know any method that will deliver this information...Does anyone?

    To your second question:
    The proper way is to use a X-Validation to estimate the performance. Otherwise you will test on the training exampleset. If you are going to get predictions after the forward selection, you will have to learn a model again and apply it separately on the subset that's the result of the forward selection.

    Greetings,
      Sebastian
Sign In or Register to comment.