The Altair Community is migrating to a new platform to provide a better experience for you. In preparation for the migration, the Altair Community is on read-only mode from October 28 - November 6, 2024. Technical support via cases will continue to work as is. For any urgent requests from Students/Faculty members, please submit the form linked here

learning curve

jpmor82jpmor82 Member Posts: 2 Contributor I
edited November 2018 in Help
Hi,
I'm trying to do a learning curve in rapidminer 5, but the log don't output anything, can anyone help me??
xml process:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.0">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" expanded="true" name="Root">
    <parameter key="logverbosity" value="3"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="1"/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <parameter key="parallelize_main_process" value="false"/>
    <process expanded="true" height="235" width="547">
      <operator activated="true" class="read_excel" expanded="true" height="60" name="Read Excel" width="90" x="45" y="30">
        <parameter key="excel_file" value="C:\Users\Joao\Desktop\Aprendizagem Computacional - Janela Digital\Dados sem missing values (9253)\FINAL_AVEIRO_e_ILHAVO(sem mv).xls"/>
        <parameter key="sheet_number" value="1"/>
        <parameter key="row_offset" value="0"/>
        <parameter key="column_offset" value="0"/>
        <parameter key="first_row_as_names" value="true"/>
        <list key="annotations"/>
      </operator>
      <operator activated="true" class="set_role" expanded="true" height="76" name="Set Role" width="90" x="179" y="30">
        <parameter key="name" value="Preço"/>
        <parameter key="target_role" value="label"/>
      </operator>
      <operator activated="true" class="nominal_to_numerical" expanded="true" height="94" name="Nominal to Numerical" width="90" x="313" y="30">
        <parameter key="return_preprocessing_model" value="false"/>
        <parameter key="create_view" value="false"/>
        <parameter key="attribute_filter_type" value="0"/>
        <parameter key="attribute" value=""/>
        <parameter key="use_except_expression" value="false"/>
        <parameter key="value_type" value="0"/>
        <parameter key="use_value_type_exception" value="false"/>
        <parameter key="except_value_type" value="4"/>
        <parameter key="block_type" value="0"/>
        <parameter key="use_block_type_exception" value="false"/>
        <parameter key="except_block_type" value="0"/>
        <parameter key="invert_selection" value="false"/>
        <parameter key="include_special_attributes" value="false"/>
      </operator>
      <operator activated="true" class="create_learning_curve" expanded="true" height="60" name="LearningCurve" width="90" x="447" y="30">
        <parameter key="training_ratio" value="0.7"/>
        <parameter key="step_fraction" value="0.05"/>
        <parameter key="start_fraction" value="0.05"/>
        <parameter key="sampling_type" value="2"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="-1"/>
        <parameter key="parallelize_training" value="false"/>
        <parameter key="parallelize_test" value="false"/>
        <process expanded="true" height="423" width="303">
          <operator activated="true" class="support_vector_machine" expanded="true" height="112" name="SVM" width="90" x="45" y="30">
            <parameter key="kernel_type" value="0"/>
            <parameter key="kernel_gamma" value="1.0"/>
            <parameter key="kernel_sigma1" value="1.0"/>
            <parameter key="kernel_sigma2" value="0.0"/>
            <parameter key="kernel_sigma3" value="2.0"/>
            <parameter key="kernel_shift" value="1.0"/>
            <parameter key="kernel_degree" value="2.0"/>
            <parameter key="kernel_a" value="1.0"/>
            <parameter key="kernel_b" value="0.0"/>
            <parameter key="kernel_cache" value="200"/>
            <parameter key="C" value="0.0"/>
            <parameter key="convergence_epsilon" value="0.0010"/>
            <parameter key="max_iterations" value="100000"/>
            <parameter key="scale" value="true"/>
            <parameter key="calculate_weights" value="true"/>
            <parameter key="return_optimization_performance" value="true"/>
            <parameter key="L_pos" value="1.0"/>
            <parameter key="L_neg" value="1.0"/>
            <parameter key="epsilon" value="0.0"/>
            <parameter key="epsilon_plus" value="0.0"/>
            <parameter key="epsilon_minus" value="0.0"/>
            <parameter key="balance_cost" value="false"/>
            <parameter key="quadratic_loss_pos" value="false"/>
            <parameter key="quadratic_loss_neg" value="false"/>
            <parameter key="estimate_performance" value="false"/>
          </operator>
          <connect from_port="training set" to_op="SVM" to_port="training set"/>
          <connect from_op="SVM" from_port="model" to_port="through 1"/>
          <portSpacing port="source_training set" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
          <portSpacing port="sink_through 2" spacing="0"/>
        </process>
        <process expanded="true" height="423" width="303">
          <operator activated="true" class="subprocess" expanded="true" height="94" name="OperatorChain" width="90" x="45" y="30">
            <parameter key="parallelize_nested_chain" value="false"/>
            <process expanded="true" height="423" width="656">
              <operator activated="true" class="apply_model" expanded="true" height="76" name="ModelApplier" width="90" x="112" y="30">
                <list key="application_parameters"/>
                <parameter key="create_view" value="false"/>
              </operator>
              <operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="313" y="30">
                <parameter key="use_example_weights" value="true"/>
              </operator>
              <connect from_port="in 1" to_op="ModelApplier" to_port="unlabelled data"/>
              <connect from_port="in 2" to_op="ModelApplier" to_port="model"/>
              <connect from_op="ModelApplier" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
              <connect from_op="Performance" from_port="performance" to_port="out 1"/>
              <portSpacing port="source_in 1" spacing="0"/>
              <portSpacing port="source_in 2" spacing="0"/>
              <portSpacing port="source_in 3" spacing="0"/>
              <portSpacing port="sink_out 1" spacing="0"/>
              <portSpacing port="sink_out 2" spacing="0"/>
            </process>
          </operator>
          <operator activated="true" class="log" expanded="true" height="76" name="ProcessLog" width="90" x="179" y="30">
            <parameter key="filename" value="C:\Users\Joao\Desktop\Aprendizagem Computacional - Janela Digital\a.log"/>
            <list key="log"/>
            <parameter key="sorting_type" value="0"/>
            <parameter key="sorting_k" value="100"/>
            <parameter key="persistent" value="false"/>
          </operator>
          <operator activated="true" class="log_to_data" expanded="true" height="94" name="Log to Data" width="90" x="170" y="202"/>
          <connect from_port="test set" to_op="OperatorChain" to_port="in 1"/>
          <connect from_port="through 1" to_op="OperatorChain" to_port="in 2"/>
          <connect from_op="OperatorChain" from_port="out 1" to_op="ProcessLog" to_port="through 1"/>
          <connect from_op="ProcessLog" from_port="through 1" to_op="Log to Data" to_port="through 1"/>
          <connect from_op="Log to Data" from_port="through 1" to_port="performance"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="source_through 2" spacing="0"/>
          <portSpacing port="sink_performance" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Read Excel" from_port="output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Nominal to Numerical" to_port="example set input"/>
      <connect from_op="Nominal to Numerical" from_port="example set output" to_op="LearningCurve" to_port="exampleSet"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
    </process>
  </operator>
</process>

Answers

  • jpmor82jpmor82 Member Posts: 2 Contributor I
    The problem is solved, I find that in log operator i have to input what values I want
Sign In or Register to comment.